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An asymmetric synthesis of penienone has been accomplished from (R)-5-hydroxymethyl-2-cyclohexe-
none by adopting a linear strategy. Lipase-PS-catalyzed enzymatic kinetic resolution (EKR) and Julia–
Kocienski olefination followed by substrate-directed anionic hydroxymethylation have been successfully
employed to achieve the target molecule.

� 2009 Elsevier Ltd. All rights reserved.
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Penienone and penihydrone, the cyclohexane-based fungal
metabolites have been isolated in 1997 by Kimura et al., from
the metabolite of the fungus Penicillium sp. no. 13, and these were
found to have plant growth regulatory activity.1 Their structures
have been elucidated on the basis of NMR and CD spectral studies.
To date two asymmetric syntheses of (�)-penienone and one
asymmetric synthesis of (+)-penihydrone have been reported in
the literature. The first synthesis of both the molecules is reported
by Sato and co-workers, in which an efficient cuprate addition of
(1E,3E)-hepta-1,3-dienyl group to chiral 5-substituted-2-cyclo-
hexenone has been accomplished.2 Meyers and Waterson, in
2000 reported the asymmetric synthesis of (�)-penienone by
employing bicyclic chiral lactams as a homoenolate equivalent to
access a properly substituted chiral 5-substituted-2-cyclohexe-
none which is the core structure of penienone.3 We have recently
developed a chemo-enzymatic strategy for the synthesis of chiral
5-hydroxymethyl-2-cyclohexenone in both enantiomeric forms.
Retrosynthetic analysis of penienone reveals that it can be easily
accessed from (R)-5-hydroxymethyl-2-cyclohexenone by func-
tional group manipulation (Scheme 1).

The starting compound (R)-5-hydroxymethyl-2-cyclohexenone
(3) has been prepared by lipase-catalyzed (Burkohedria cepacica, Li-
pase-PS) kinetic resolution of the parent racemic compound (1).4 In
the irreversible trans-esterification reaction with vinyl acetate as
the acylating agent the fast reacting (S)-enantiomer is converted
to the corresponding acetate (2) (yield = 47%, ee = 99%) whereas
the slow reacting enantiomer yielded (R)-5-hydroxymethyl-2-
cyclohexenone (3) in 48% yield (ee = 98%).5 The acetate group in
the (S)-enantiomer is deacetylated with PPL (Porcine pancreatic
lipase) to afford (S)-5-hydroxymethyl-2-cyclohexenone (4) in 82%
yield. The primary hydroxyl group is oxidized with PCC (pyridini-
um chlorochromate) to yield the (S)-ketoaldehyde (5).6 The race-
mization of (S)-ketoaldehyde to the corresponding racemic
ll rights reserved.
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mixture (1) is achieved by treatment with catalytic DBU (1,8-
diazabicyclo-undec-7-ene) in tetrahydrofuran7 at room tempera-
ture. Chemoselective reduction of the aldehyde functionality is
achieved with NaCNBH3 in methanol. So by a three-step methodol-
ogy the undesired (S)-5-hydroxymethyl-2-cyclohexenone (2) has
been racemized to (±)-5-hydroxymethyl-2-cyclohexenone
(Scheme 2). This can be used again in the initial kinetic resolution
step.

The primary hydroxyl group in 3 was protected as its TBDPS
(tert-butyl diphenylsilyl) ether by treatment with imidazole and
TBDPS–Cl to afford compound 6 in 90% yield. The keto protection
in compound 6 was problematic in our hands and after the failure
of numerous literature procedures, we achieved the desired trans-
formation by a three-step protocol as described by Smith.8 Bromin-
ation and dehydrobromination of compound 6 with Br2–CCl4/Et3N
afforded (R)-2-bromo-5-(tert-butyl-diphenyl-silanyloxymethyl)-
cyclohex-2-enone (7) in 88% yield.9 Compound 7 when refluxed
with ethylene glycol and PPTS (pyridinum para-toluene sulfonate)
in benzene afforded the corresponding ketal 8 in 72% yield. Debro-
mination of 8 was achieved by treatment with n-BuLi at �78 �C
and quenching with NH4Cl to afford compound 9 in 78% yield.
Deprotection of the TBDPS group was achieved by treatment of 9
with TBAF (tetrabutylammonium fluoride) in tetrahydrofuran10

to yield alcohol 10.11 Oxidation of 10 with TPAP/NMO (tetrapropyl
ammonium perruthenate/N-methyl morpholine-N-oxide)12 in the
presence of powdered molecular sieves afforded the aldehyde 11
in 88% yield.13 Wittig olefination of aldehyde 11 with phospho-
(-)-penienone

(R)-5-hydroxymethyl-2-cyclohexenoneJulia-Kocienski olefination

Scheme 1. Retrosynthetic analysis of penienone.
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Scheme 2. Synthesis of (R)-5-hydroxymethyl-2-cyclohexenone by lipase-catalyzed
kinetic resolution and recycling of the (S)-enantiomer.
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Scheme 3. Reagents and conditions: (a) TBDPS–Cl, imidazole, DMF, 90%; (b) Br2–CCl4, Et3N, 0 �C, 2 h, 88%; (c) (CH2OH)2, PPTS, benzene, reflux, 48 h, 72%; (d) n-BuLi, �78 �C to
rt, NH4Cl, 78%; (e) TBAF/THF, 90%; (f) TPAP, NMO, MS (4 Å), rt, 6 h, 88%; g) n-BuLi, �78 �C; 1E,3E-hepta-1,3-dienylphosphoniumbromide; (h) Ph3P, DIAD (diisopropylazo-
dicarboxylate), THF, rt; (NH4)6Mo7O24�4H2O, H2O2, 78%; (i) LHMDS, �78 �C, 1 h, then add 7, 2 h, 70%; (j) PTSA, CHCl3, 2 h, 0.1 equiv I2, 100 W tungsten lamp, 2 h; 88%; (k)
LiTMP, benzotriazol-1-yl-methanol, 70%.
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nium ylide derived from (E)-1-bromo-hex-2-ene at �78 �C affor-
ded the undesired compound 12 instead of the desired compound
14. The formation of 12 can be explained as follows. During the
preparation of the Wittig ylide 1E,3E-hepta-1,3-dien-
ylphosphoniumbromide, the presence of some triphenylphosphine
causes deketalization14 and subsequent olefination yielded com-
pound 12 in 70% yield (E,E/E,Z = 3:1). The installation of the re-
quired 1E,3E-hepta-1,3-dienyl group was successfully
accomplished by a Julia–Kocienski protocol.15 The desired sulfone
(13)16 was prepared from (E)-2-hexenol17 and 2-mercaptobenzo-
thiazole by a standard method.18 The sulfone was subjected to
the olefination reaction with aldehyde 11 in the presence of
LHMDS (lithiumhexamethyldisilazide) to afford compound 14.
The ketal moiety in 14 was removed by treating the compound
with PTSA (para-toluenesulfonic acid) in CHCl3 to afford compound
15 (mixture of geometrical isomers) in 95% yield. The undesired E,Z
component in compound 15 was photoisomerized to the desired
E,E component19 by treatment of 0.1 equiv I2.20 After successful
installation of the (1E,3E)-hepta-1,3-dienyl moiety in a stereocon-
trolled way the remaining task is to introduce the required
hydroxymethyl group at the a-carbon in a stereoselective way to
achieve the total synthesis of (�)-penienone. An organocatalytic
asymmetric variant of the aldol reaction was first tried with com-
pound 15 and formaldehyde in the presence of (S)-proline.21 After
the usual work-up and purification (�)-penienone was obtained in
30% yield only. The unusual low yield of this organocatalytic aldol
reaction forced us to adopt a different strategy for the introduction
of the required hydroxymethyl functionality. Base-induced, sub-
strate-directed hydroxymethylation was attempted.22 Hence when
compound 15 was treated with LiTMP (lithium tetramethylpiperi-
dide) at �78 �C and the generated enolate was treated with ben-
zotriazol-1-yl-methanol at the same temperature, (�)-penienone
was obtained in 70% yield. The other diastereomer epi-penienone
was obtained in 15% yield. The stereochemical course of the reac-
tion was governed by the presence of the bulky (1E,3E)-hepta-1,3-
dienyl moiety. The overall yield of (�)-penienone was 16% starting
from compound 3 (Scheme 3). Our synthesized (�)-penienone
shows comparable spectral characteristic values as those reported
in the literature.1–3,23,24

In conclusion we have described an efficient asymmetric syn-
thesis of the natural enantiomer of (�)-penienone by adopting an
enzymatic kinetic resolution–racemization protocol and Julia–
Kocienski olefination strategy followed by substrate-directed anio-
nic hydroxymethylation strategy.
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